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DATA FOR FK)TION

MEASURED ON

SUMMARY

A method is presented for deriving time-response and frequency-
response data for angle of attack and normal acceleration at the center
of gravity of an aircrsft when these data are measured at locations on
the aircraft other than the center of gravity and when the pitching
velocity is not measured. The method involves the calculation of transfer
functions for the measured quantities and operation on these transfer
functions to derive the transfer function of the desired quantities at
the center of gravity. Time-response data at the center of gravity are
then obtained by applying a control input to the corrected transfer func-
tion. Basic aerodynamic relationships and the forms usually assumed for
the transfer functions are used in the derivation. A numerical example
is included to illustrate the application of the method.

The method appears to have particular application to missiles and
models of aircraf% where the number of telemetering channels available
may limit the number of quantities that can be recorded or where, because
of space limitations, instruments cannot be placed in the most desirable
locations.

INTRODUCTION

In the determination of the dynamic stability of aircraft, it is
often desirable to flight test the aircraft or scale models of the air-
craft in order to determine transfer functions or frequency responses.
In the study of longitudinal stability, for example, the transfer func-
tions relating angle of attack, pitching velocity, and normal acceleration
to the control deflection may be desired. Frequently, however, facilities
for recording the data necessary for a general stability analysis are
limited. Guided missiles and rocket-propelled scale models that require
telemetering facilities often present such a problem. Furthermore,
distribution of such items as fuel and propulsion units in either models

..—— — —



2 rucA m 3021

or full-scale aircrsft may preclude the possibility of locating recording
instruments in the most desirable positions. For these reasons, test con-

.

ditions under which a limited number of pertinent quantities are measured
on the aircraft at positions other than those suitable for stability
studies are frequently experienced.

When aircraft motion is confined to two degrees of freedom, any two
measurements (such as two accelerometers; one in the nose and one in the
tail) will suffice. It is customary, however, to define the short-period
longitudinal motion of an aircraft with angle of attack and normal accelera-
tion measured at the center of gravity. When any two independent quantities
are measured, time histories of the quantities desired for defining the
motion may theoretically be calculated from the measured transient response
data. The procedure, in general, requires differentiating or i.ntegratlng
one or more of the recorded quantities and applying corrections point by
point to the measured curves. This process is laborious, however, and may
introduce inaccuracies not present in the original data. As an alternative,
an approach which appears shorter and more accurate would be to calculate
transfer functions for the measuxed quantities and to operate on these
transfer functions to derive the transfer functions and transient time
responses for the desired quantities. This approach is used in the method
described in the present paper.

The derivation of the relationships between angle of attack and
normal acceleration at the center of gravity and these quantities measured
ahead of (or reamard of) the center of gravity is presented for the case
in which pitching velocity is not known. (The method is greatly simpli-
fied when pitching velocity is known and consideration of this condition
is included.) Pitching velocity is calculated from angle-of-attack and
nomal-acceleration transfer functions related to the center of gravity.

An application of this
from drop tests of a freely

method is illustrated by use of data obtained
falling body.

SYMBOLS

—
c mean aerodynamic chord

% lift coefficient

%
variation

%~ variation

attack,

of lift coefficient with

of lift coefficient with
&L

SE’ ‘e’

angle of attack,

rate of change of angle of

—

.
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acL
variation of lift coefficient with pitching velocity,

m ‘e’

acL
variation of lift coefficient with elevator deflection. —

pitching-moment coefficient

variation of pitching-moment
Wrn
aa

variation of pitching-moment

ahangle of attack, —
aDa’ ‘ec

variation of pitching-mment
acm
G’ ‘ec

variation of pitching moment

differential operator, ~
dt

acceleration due to gravity,

‘ a6

coefficient with angle of attack,

coefficient with rate of chamge of

coefficient with pitching velocity,

%with elevator deflection, —
a5

ft/sec2

nondimensional radius of gyration of aircraft about axis of
pitch

distance between center of gravity and
(pcmitive forward), ft

distance between center of gravi~ and
(positive forward), ft

angle-of-attack vane

normal accelermneter

numerical integer

numerical integ= or normal acceleration, g units

time, sec

true airspeed, ft/sec

angle of attack, radians

——_—— —. —-——.— — ——
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7 flight-path angle, radiau

5 elevator deflection, radians ,

e angle of pitch, radians

mcA m 3021

radians/sec

notation

P relative-density factor, Mass

lulrdensi~ x Wing area x @

9 phase angle, deg

@ mar frequency,

[1 performance operator

Subscripts:

Cg center of gravi~

P location of normal-acceleration pickup

v location of angle-of-attack vane

!bansfer-function coefficients:

K
= Cbc% - kc%
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M = 2M ~ Ky2C~

‘=i:t%’%)-@%+%Q)

, =g~.:% - %’%)

E
d coefficients of transf= functions obtained at locations other~

}

than the center of gravi~ and correspondhg, respectively,
x to coefficients G, H, M, N, and P of transfer functions

Y at the center of gravi~.

Jz
AMLYSIS

Consider an aircraft having an angle-of-attack vame located a dis-
tance 71 ahead of the center of gravity and a normal-acceleration

sensing device located a distance 72 ahead of the center of gravi~.

The pitching velocity is not recorded. It is assumed that the aircraft,
when disturbed from trim, will remain within the linear range of the
pertinent stability derivatives, that the perturbation angles are small,
and that the structure is rigid. The sign convention which relates the
quantities used herein is shown in figure 1. Fran this figure the
following basic longitudinal relationship may be seen to exist:

gn*VD7= V(D13- IkL) (1)

The relationship
and the point at
as follows:

between the normal acceleration at the center of gravity
which the normal accelaation is recorded may be written

(2)

A similar relationship may be obtained by relating the angle of attack
at the center of gravity to the angle of attack measured at the angle-of-
attack vane

(3)

_._ ——— ——-—---—
.—— __—
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In cases in which the pitching velocity is lmown, equations (2)
and (3) in transfer-function form may be solved to obtain the transfer
functions of angle of attack and normal acceleration at the center of
gravi~. If the pitching velocity is not lamwn, further transformation
of the equations is reqpired. Multiplying eqmtion (3) by VD/g gives

-1

and combining equations (1)

%g +

and (4) to eliminate (IkL)cg gives

(4)

(33-?)$’ (5)

(5) to eliminate D2e gives

-1

The combination of equations (2) and

(6)

which is the relationship between the two lnmwn quantities of angle of
attack and normal acceleration located at points other than the center
of gavi~ and the unknown qyantity of normal acceleration at the center
of gravi~.

For-the relationship of angle of attack at the center of pyavity in
terms of knuwn quantities, equations (2) and (3) may be combined to
eliminate e

‘h=e ~ - % ‘e ‘et-a
by equation (6).

*(=+X3- l?) (7)

from flight records and kg is given

of equations (6) and (7) gives a newR—I’I=@w the relatio~hips
set of relationships between the lmown and unbown quantities as

w = TJ _ (zll-,2)D{(++%+(z@+v~} 03)

22VD
‘Cg = % qg (% - %)-— (9)
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Equations (6)
determination

7

and (7), or (6) and (8), or (8) and (9) may be used in the
of angle of attack and normal accel~ation at the center of

gravity inasmuch as these relationships are interchsmgeable.

lkansfm-l?unction Concept

In the application of this method, equations (6), (7), (8), and (9)
are used in transfer-function form. The reader is assmned to be familiar
with the relationship between the time and frequency realms smd with the
transfer-function concept of expressing the dynamic characteristics of a
system. Reference 1 presents the theory of this concept and ref=ences 2
and 3 describe several methods of obtaining transfer functions from flight
data. Equations (6) and (7) written in’terms of the transfer functions
relating normal acceleration and angle of attack to elevator deflection
beccxne,respectively,

[1g 1

[

(21D - [1
Zzv&~b =(21- 72)D - V [1]

v): +—- (10)
Cg P

13~

(U)

where brackets denote a performance operator.

be pointed out that no assumption need be made as to theIt should
form of the transfer functions. IYequency response at the center of
gravity of the airplane may be obtained from the frequency response meas-
ured at locations other than the center of gravity by the use of equa-
tions (10) and (11) (or eqyations (8) and (9) written in operator nota-
tion) when the substitution of ju for D is made in the equations.
However, this approach will not be expanded in this paper.

In order to illustrate the transfer-function approach, equations (10)
and (U) are solved by using transfer functions as obtained by stability
theory when the nbtions of the aircraft are confined to two degrees of
freedan. This essmuption is made when only the short-period longitudinal
mode is of interest. If it is desired to assume transfer-function forms
of higher order than are assumed herein, the method should still be
applicable.

The equations of motion for two degrees of freedam (constant air-
speed and no structural modes of oscillation) are expressed as follows:

. — .—— —-— — ——e ——. ..
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(iZ!)

(13)

Through use of det~ts, each of the two dependent variables a
and De may be related to the independent variable 5 in the following
fOrm:

a_ GD+H-—
6

AD2+m+c

D9 JD+K—=

5 Ar?+m)+c

(14)

(15)

and by the use of equation (1), the relationship between n and 5 may
be shown to be of the form

M02+ND+P

AD2+m+c
(16)

where A, B, C, G, H, and the other transfer-function coefficients
are composed of combinations of the parameters of equations (12) W (13)
and are defined in terms of these parameters in the list of symbols. It
may be shown that the denominator of the longitudinal transfer functions
(the c~acteristic eqwtion) expresses the damping and frequency of the
free short-period longitudinal motion of the aircraft and is comon to
all such transfer functions regardless of the location on the aircraft
at which the variable under consideration is measured or the input and
response that are related.

In the application of this method, it is assumed that transfer
functions relating elevator deflection to the response of angle of attack
and normal accel=ation at points other than the center of gravity have
been obtained by one of the several means available. The transfer func-
tions discussed herein are symbolized by the following eqwtions:
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[1a= ED+F

:V AD2+BD+C

[1g= GD+H
5
Cg AD2+BD+C

[1g .XI?+YD+Z
5P AD2+m+c

[1
2. MD=’+ND+P

5 Cg AD2+EZI+C

[1

D% _ JD2’+KD—_
8 A#+BD+c

9

(17)

>

Reference to equations (2) and (3) shows that the transf= functions at
the points of measurement and the corresponding transfer functions at the
center of gravity should be of the same form.

Transfer Functions at the Center of Gravity

When the appropriate forms of the transfer functions are used, equa-
tions (10) and (U_) are expressed in terms of the known and unlmown trans-
fer coefficients. Equation (10), written in terms of equation (17),
becomes

12VD2

k-l}

ED+F

g (18)
+m+c

Equation (I8) indicates that, with the approach used herein, a
quadratic numerator and denominator on the left-hand side of the equation
have been set equal to a cubic numerator and
hand side of the equation. Obviously, there
common to both the nmwrator and denominator
equation (18) which can be canceled to leave
quadratic factors.

denominator on the right-
must exist a linear factor
of the right-hand side of
an expression with only

—.— — ———
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Multipl@ng both sides of equation (18) by the factor 11 -( Z2)D - V .
and equating coefficients of equal powers of the operator D yields four
relationships

-VT=-vz (19)

(
21

)
-22p-m.-w+2~z (20)

(

22V ~
21 - Z2)N - VM = -vx+21Y+— (21)

g

(‘1 - 72)M = ZIX+~.E

A second set of relationships may be
process with equation (n). S@stitution
of equation (17) into equation (11) gives

(22)
g

obtained by following a similar
of the trsmsfer-function forms

(23)

and equating like coefficients gives the following three relationships:

o=-&j(P -z)

21g(N-y)H=F-— Z2V

21g(M-x)G=E-— 12V

It is immediately obvious that equations (19) and
to a single equation P = Z. Furthermore, examination
shows that the right-hand side of equation (26) may be

- $ M; thereforeexpression

(24)

(25) .

(26)

(24) are equivalent
of equation (22)
replaced by the

(27)
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This relationship can also be seen by referring to the expressions for
G and M in the section entitled “Symbols.” Hence, equations (22)
and (26) are parametric representations of equation (27) and may be
replaced by this single equation. For purposes of calculation, the
equations which should be used are equations (19), (20), (21), (25),
and (27). Although these equations form the basic linearly independent
set of equations, equations (22) and (26) would also be satisfied if the

[1 [1transfer functions n sad ~
5P

were known exactly. However, in
v

the practical application where flight data are used, inaccuracies are
inherent in the determination of the measured coefficients. In the
procedure used to determine coefficients relating to motion of the centw
of gravity, the inherent inaccuracies should be minimized.

I?othequation (22) and equation (26) contain the coefficient E
which is the coefficient of the first power of the operator D h the
angle-of-attack transfer function measured at the vane. Experience has
shown that E and the associated coefficient of the transfer function at
the center of gravity G are usually so small that they have little
effect on airplane response and are therefore usually obtained with low
percentage accuracy. Hence, altho@ equations (22) and (26) should be
numerically compatible with the other equations (equations (19) to (27)),
this numerical check may be poor because of the inherent inaccuracies in
the measurement of the coefficient E.

The four relationships, equations (19), (20), (21), and (25), may be
rearranged slightly to express each unlmown coefficient as a function of
the lmown coefficients. These expressions are

\

Zlg ~
H=F+— (28)

~2

P=z (29)

22
N=Y-TZ (30)

22 12
M

12
=X-—F-—Y-—Z1-

(
22)Z

13 v TJ2
(31)

The five equations, equations (27) to (31), express the coefficients of
the numerators of the angle-of-attack and normal-acceleration transfer
functions related to the center of gravity in ternm of measured transf=-
function coefficients, the distance between their point of measurement
and the center of wavity, and the atispeed at which they were measured.

..——— —. ——— -—-—.——
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The inverse bplace transformation may be applied to the determined trans. -
fer functions in order to obtain time-response data at the center of
gravity in response to control inputs that have kplace transformations.

The
tion may
transf=
starting
veloci~
function
order to

Pitching-Velocity Transfer Function

transfer function relating pitching veloci~ to elevator deflec-
be obtained in a manner similar to that described for obtaining
functions involving normal accel=ation and angle of attack.
with any one of the three basic equations involving pitching
(equations (1), (2), and (3)), the method of equating transfer-
coefficients of like powers of the operator D is applied. In
express the coefficients J and K in terms of the measured

coefficients only, equations
are then

to (35;

substituted for the

J=F

equations used
may be seen to

(27) to (31) derived in the preceding section
derived coefficients to give

gY+.E-(21 - 22)Z+-
V V2 (32)

(33)

to determine the unlmown coefficients (equations (28)
express each unknown coefficient as a function of

the known coefficient of the same power of D, Plus a correction term.
Other relationships between the co~fficfents ~y be readily obtained by
combining in various ways the equations already presented. The effects
of using other groups of equations on the accuracy of the numerical results
are mentioned in the following section.

EXAMPLE OF APPLICATION
.

As an illustration of the method presented herein, use is made of
data obtained from drop tests of a freely falling model for which the
response in angle of attack to a step elevator input was measured ‘3.51feet
ahead of the center of gravi~ (21) and for which the response in normal
acceleration was measured 2.165 feet ahead of the center of gravity (22).
The pitching veloci~ was not recorded. The actual flight data were
recorded at a constantly decreasing altitude and Increasing Mach number.
These conditions w=e reflected in the time responses as varying frequency,
varying damping, and a slight trim change. The response data, however,
were adjusted for the condition of constant altitude, constant l@ch num-
ber, and zero trim change and were approximated with the following
analytical expressions for a true velocity of M5 feet per second:
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a(t) = 0.01745 - e‘1016t(-0.0@86 sti 9.932t + 0.01745 cos 9.932t), radians

n(t) = 0.238 - e‘1016t(o.356 Sill9.932t + 0.17647 COS 9.932t), g titS

t)(t) = -0.00932, radians

A plot of these analytical expressions is shown in figure 2.

Making the lkplace transformation (ref. 1) of these equations and
dividing the transformations of the first two equations by the transforma-
tion of the third equation gives transfer functions relating angle of
attack and normal acceleration to elevator deflection at the points of
measurement

[1 3.109D - 193.40 radian
;

V=&’ +2.32D+ 99.99’ radian

[1 -6.81gD2 + o.7266D -2637.8 g units
:P= J

D2+ 2.32D+ 99.99 radian

These transfer functions are in the normalized form in which all the
coefficients have been divided by the inertia coefficient A. The sub-
stitution of D . Jo in these transfer functions produces frequency-
response relationships that are plotted in figure 3 as amplitude ratio
and phase angle. The NACA sign convention used in this paper (fig. 1)
defines a positive elevator deflection as one for elevator trailing edge
down, and therefore, a positive elevator deflection will, in general,
produce negative static responses. In order to conform with the usual
practice of plotting frequency-response curves, the phase angles have been
shifted l&3° (zero phase angle at zero frequency). The unusual trend in
the phase angles shown in figure 3(a) is caused by the negative coefficient
of the & term in the numerator of the transfer function relating normal
acceleration to elevator deflection.

The application of equations (27) to (31) to the coefficients of the
transfer functions obtained ahead of the center of gravity gives the
following coefficients corrected to the center of gravi~:

P/A = - 2637.8

N/A = 7.179

M/A = 6.207

.

-—. —



14 NACA TN 3021

G/A = -0.226

H/A = -1~.00

In order to illustrate the effect on the coefficients M and G
when eqyations involving E are used, calculations of the coefficients
were made with equations (22) and (26). Equation (22) gave

‘M/A = 44.07

Equation (26) gave

G/A= -1.6 (M/A = 44.07)

G/A = 1.9 (M/A = 6.207)

These values of the coefficients M and G differ considerably from
those found by use of equations (27) and (31) and give illogical values
of smplitude ratio at high frequencies in that a wch greater value of
control effectiveness would be required than could be obtained from the
freely falling model. With ref=ence to the stabili~paramet=s that
define G/A, a positive sign for this coefficient is likewise illogical.
A check on logical values of the high frequency coefficients M/A and
G/A was made by noting that from stabili~ theory (see transfer-function
coefficients in the section on symbols)

G -v f-J—s—
A 2pE %

By the use of these relationships, values of the Wmeter c% (based

on wing area) were found to be in good agreement with theory when equa-
tions not involving E (i.e., equations (27) and (31)) were used for
obtaining values of G/A and M/A.

Additional numerical solutions for the coefficients of the transfm
functions were obtained by the use of several other sets of equations
which maybe derived from combinations of equations (27) to (33). All
of these sets of equations appeared to be less well.conditioned for
obtaining accurate results than the equations presented because these
sets of equations frequently expressed the values of unknown coefficients
in terms of known coefficients of other powers of D to which they are
not directly related physically. In some cases these other combinations
of equations yielded numerical answers for the unknown coefficients that
differd from logical values by as mch as a factor of 1000.
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The coefficients of the numerator of the pitching-velocity transfer
function may be obtained by using equations (32) and (33) to give

J/A = -193.74

K/A = -95.97

‘Ihecomplete transfer functions can nowbe givenby the following
equations:

k]Q -0.226D - 194.00 radian

Cg = D2 + 2.32D + 99.99’ radian

[1~ . 6.2071# + 7.179D - 2657.8, g unit
5 Cg D2+ 2.32D+ 99.99 radian

[1De -193.74D - 95.97 radian/second
T ‘D2+2.32D+ 99.99’ radian

The frequency response of the model described by these transfer functions
is shown in figure 4.

It may be noted that the significant changes in the transfer functions
resulting from the transformation to the center of gravi~ occurred in the
coefficients of the highest order terms (of the numerators). ‘lhenegative
sign of the coefficient G and the positive sign of the coefficient M
obtained in the transformation are in agreement with stibili~ theory.
The phase-angle variation of angle of attack related to elevator deflection
is such that in the frequency range shown (fig. 4 (b)), the lag appears to
approach a constant value of 180°. At higher frequencies, however, where
the high frequency coefficient becomes dominant, the phase-angle variation
approached a constant value of 93° lag. It may also be noted that at the
natural frequency of the freely falling model, the phase-angle variation
of the ratio of pitching velocity to elevator deflection is about zero;
whereas normal-accelerationand angle of attack are lagging elevator deflec-
tion by about ~“.

The foregoing results may be further illustrated in the the realm
by the application of the inverse I.aplacetransformation to the derived
transfer functions. For an elevator step input of the ssme magnitude as
that used in the test, b(t) = -0.00932 radian, the analytical expres-
sions as functions of the will be

____.—_. .——— . ..————
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a(t) = o.ol~ - o.0176e-1*16tsti(9.932t - ~.6°), degrees

n(t) = o.23& - 0.305g2e-1*16t siII(9.932t + 81.6050), g tits

De(t) = 0.~866 + 0.l~2e -I.16tsin(g.g32t - 2.830), radians/second

These time responses together with the the responses from figure 2 are
shown in figure 5.

Inspection of figure 5 indicates that the angle of attack was
affected very little by the transformation;whereas normal acceleration
was changed considerably. The initial positive jump in normal accelera-
tion at t = O experienced by the freely falling model at a point
2.165 feet ahead of the center of gravity as compared with the negative
jump at t = O experiencedat the center of gravi@ is due to the
effectively instantmeous change in tail loading as a result of the step
deflection. The angular acceleration produced by application of the
tail load resulted in a component of linear acceleration at the point of
measurement which was larger in magnitude than and opposite in direction
to the actual ltiesr accel=ation produced by the tail load, which is
indicated by the normal acceleration calculated at the center of ~avity.

A method is presented

CONCLUDING ItEIWUW

for analyzing longitudinal response data when
pitching veloci~ is not Imown and normal acceleration and angle of
attack are measured at locations other than the center of gravity. By
means of this methOa frequency-response data or transfer functions for
angle of attack and normal acceleration are obtained. From these trans-
fer functions the enttie time response may be obtained for these quanti-
ties at the center of $ravi@. This method also provides a means of
obtaining pitching veloci~ when normal acceleration and angle of attack
are not recorded at the same location in the airplane. Although the
method as applied used transfer functions obtained frm stibility theory
for a system with two degrees of freedmn, the analysis was general and
the same principal should be applicable to systems of higher order or of
a greater number of degrees of freedom.

‘I!henumerical example presented indicates that cae must be used in
selecting a we~ conditioned set of equations for the coefficients of the
transf= function if accurate results me to be obtained.

This
models of

method appears
aircraft where

to have particular application to missiles and
the nuniberof telemetering channels available
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may l~t the number of quantities that can be recorded or where, because
of space limitations, instruments cannot be placed in the most desirable .
locations.

lkngley Aeronautical kboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., July 29, 1953.

REFERENCES

1. Gardner, Murray F., and Barnes, John L.: Transients in Linear Systems
Studied by the Iaplace !Ihnsformation. Lumped-Constant Systems.
Vol. I, John Wiley & Sons, Inc., 1A2.

2. Greenberg, Harry: A Survey of Methods for Determining Stability
Parmeters of an Airplane From Dynamic Flight Measurements.
NACA TN 2340, 1951.

3. Donegan, James J., and Pearson, Henry A.: Matrix Method of Determining
the Imgitudinal-Stability Coefficients and IYequency Response of an
Aircraft from Transient Flight Data. NACA Rep. 1070, 1952. (Super-
sedes NACA TN 2370.)

.

——..— -—



P
02 I

\

Flight
n

path a

v
Y Horizontal reference

v
u

Figure l.- Sign convention. Arrows ticate positive direction.

‘8



●L

C’

o .4 .8 1.2 1.6
!Elme,t, sec

Figure 2.- Time history of elevator input and response
(measured 5.51 feet ahead of center of gravity) and
(measured 2.165 feet ahead of center of ~atity) of

2.0 2.&

in angle of attack
normal acceleration
freely falling nmdel.

..— — . ..— —— .--— —-—



20 NACA TN 3021
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(a) Normal-acceleration response 2.165 feet ahead of center of
gravity related to elevator deflection.

Figure 3.- Frequency response of freely fall= model as obtained ahead
of center of gravity.
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(a) Normal-acceleration response at center of gravity related to
elevator deflection.

Figure 4.- Frequency response of freely fall-innmodel at the center
of gravity.
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(b) Angle-of-attack response at center of
elevator deflection.

Figure 4.- Continued.
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(c) Pitching velocity related to elevator deflection.

Figure k.- Concluded.
.
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Figure 5.- Time history of elevator input and response in angle of attack,
pitching velocity, and norml acceleration of the center of gravity
as compsred with the response obtained at locations ahead of the center
of gravity of a freely falling model.

NACA-I.aI@EY - 10-8-SS -1000

.— ———— .—— _ .—


